
Enhanced Privacy ID from Bilinear Pairing for
Hardware Authentication and Attestation

Ernie Brickell
Intel Corporation
Hillsboro, USA

Email: ernie.brickell@intel.com

Jiangtao Li
Intel Labs

Hillsboro, USA
Email: jiangtao.li@intel.com

Abstract—Enhanced Privacy ID (EPID) is a cryptographic
scheme that enables the remote authentication and attestation
of a hardware device while preserving the privacy of the device.
EPID can be seen as a direct anonymous attestation scheme
with enhanced revocation capabilities. In EPID, a device can be
revoked if the private key embedded in the hardware device has
been extracted and published widely so that the revocation man-
ager finds the corrupted private key. In addition, the revocation
manager can revoke a device based on the signatures the device
has created, if the private key of the device is not known. In this
paper, we introduce a new security notion of EPID including the
formal definitions of anonymity and unforgeability. We also give
a construction of an EPID scheme from bilinear pairing. Our
EPID scheme is efficient and provably secure in the random
oracle model under the strong Diffie-Hellman assumption and
the decisional Diffie-Hellman assumption.
Index Terms—hardware authentication; trusted computing;

privacy; anonymity; direct anonymous attestation; cryptographic
protocol

I. INTRODUCTION
Consider the following authentication problem: a hardware

device (e.g., a graphics chip, a trusted platform module, a
mobile device, a smart phone, or a processor) wants to authen-
ticate to a service provider that it is a genuine hardware device
instead of a software simulator, so that the service provider can
send a protected resource (e.g., one-time password or high
definition media) to the device. One possible solution is that
the hardware manufacturer assigns each device a unique device
certificate. The device can authenticate to the service provider
by showing the device certificate. However, such solution
raises a serious privacy concern as the device certificate can
uniquely identify the device.
Brickell, Camenisch, and Chen [10] introduced a crypto-

graphic scheme called Direct Anonymous Attestation (DAA)
that can solve the above problem. The original usage of DAA
is for anonymous authentication of a special hardware device
called the Trusted Platform Module (TPM). The DAA scheme
was adopted by the Trusted Computing Group (TCG) [38] and
standardized in the TCG TPM Specification 1.2 [37].
In a DAA scheme, a hardware device can be revoked only

if the private key embedded in the hardware device has been
extracted and published widely so that the revocation manager
finds the corrupted private key. However, if an attacker corrupts
a hardware device and obtains the device’s private key, but he
never publishes it, then there is no way to revoke the key

in DAA. If the named base option in DAA is used, it can
allow revocation based on signatures for all uses of the same
named base, but it has the unfortunate property of removing
the anonymity for all uses with the same named base. To get
around the problem of the limited revocation properties of
DAA, Brickell and Li [12] introduced the notion of Enhanced
Privacy ID (EPID). In EPID, the revocation manager can
revoke a hardware device based on the signatures that were
signed by the private key of the device, without reducing the
anonymity properties. The EPID scheme will have broader
applicability beyond attestation and the TCG application. More
motivations about EPID can be found in [13].
In an EPID scheme, there are four types of entities: an

issuer, a revocation manager, platforms, and verifiers. The
issuer could be the same entity as the revocation manager.
The issuer is in charge of issuing membership to platforms,
i.e., each platform obtains a unique private key from the issuer
through a join process. A platform can prove membership to
a verifier by creating a signature using its private key. The
verifier can verify membership of the platform by verifying the
signature, but he cannot learn the identity of the platform. One
important feature of EPID is that nobody besides the platform
knows the platform’s private key and nobody can trace the
signatures created by the platform if the platform has not
been tampered. Yet an EPID scheme has to be able to revoke
a platform if the platform’s private key has been corrupted.
There are two types of revocations in EPID: (1) private-key
based revocation in which the revocation manager revokes a
platform based on the platform’s private key, and (2) signature
based revocation in which the revocation manager revokes a
platform based on the signatures created by the platform. A
formal specification of EPID is given in Section II. In this
paper, we provide two contributions:

1) We give a new security notion of EPID. This new
security model is intended to address the same concept
of EPID introduced in [12]. We formally model the two
revocation methods into the security model, and we give
a formal definition of anonymity and unforgeability with
notions of revocation embedded.

2) We develop a concrete EPID scheme from bilinear maps.
Our EPID scheme builds on top of Boneh, Boyen, and
Shacham’s group signature scheme [6] and Furukawa

IEEE International Conference on Social Computing / IEEE International Conference on Privacy, Security, Risk and Trust

978-0-7695-4211-9/10 $26.00 © 2010 IEEE

DOI 10.1109/SocialCom.2010.118

768

and Imai group signature scheme [28]. Our construction
of EPID is efficient and provably secure in the random
oracle model under the strong Diffie-Hellman assump-
tion and the decisional Diffie-Hellman assumption. Our
new EPID scheme requires a much shorter key length
and signature size than the original RSA based EPID
scheme [12] and yet achieves a higher level of security.

A. Motivation for Signature Based Revocation
We now present a concrete example for motivating signa-

ture based revocation. Suppose each platform has a unique
EPID private key. Consider there is a provisioning server
for provisioning content protection keys to each platform.
Only platform with valid EPID private key can obtain a
unique content protection key from the provisioning server.
If an attacker breaks one EPID private key, he could use the
corrupted EPID private key to obtain content protection keys.
If the attacker publishes the EPID private key over the Internet,
we can revoke the key. However, in practice, the attacker may
embed the obtained content protection key in a media ripper
software without publishing the EPID private key. Once we
find the ripper software on the Internet and extract the content
protection key in it, we can back trace to the EPID signature
that was used to obtain the content protection key. We then
revoke the platform based on the signature without knowing
the corrupted EPID private key.
A possible alternative to handle revocation is to add trace-

ability to the EPID scheme, as most group signature schemes
do. That is, we give the revocation manager the ability to open
a signature and identify the actual signer. To revoke a platform
based on its signature, the revocation manager first finds out
the platforms private key or its identity, then put the private
key into the revocation list. As in DAA schemes [10], [11],
EPID scheme chooses not to have traceability from the revo-
cation manager in order to provide maximum privacy for the
unrevoked platforms. Traceability provides the capability that
a revocation manager can determine which platform generates
which signatures, for any signatures at any time, without any
acknowledgement from the user that is being traced. This is not
desirable from a privacy perspective. In EPID, if a platforms
private key has been revoked, i.e., placed in a revocation list,
the user of the platform will know that he is revoked or
being traced. If the user finds that his platform is not in the
revocation list, then he is assured that nobody can trace him,
including the issuer and the revocation manager. Observe that,
if the revocation manager does not have traceability and the
signature cannot be opened, revocation based on signature is
a much more challenging problem.

B. Revocation of Hardware Devices
The EPID scheme is mainly designed for hardware authen-

tication and attestation. Consider that a hardware manufacturer
issues a unique EPID private key for each hardware device.
Assume the hardware device has a secure storage to store
the private key and a trusted execution environment to use
the private key for creating the signatures. We expect the

revocation of hardware devices to be a rare event for the
following reasons:
1) To use the EPID scheme for hardware authentication,
we revoke an EPID key only if it has been extracted out
of the hardware device. EPID enables platform authen-
tication, but not for user authentication. If a platform
changes ownership or is stolen, there is no need to
revoke the EPID key inside as it is a valid platform.

2) In general, hardware has a good protection on its key
materials than software based solutions. If the secure
storage and trusted execution environment of the plat-
form are implemented in hardware, then the only way
to extract the EPID key is to launch a physical attack.

Although our revocation method in the EPID scheme seems
expensive, it is more capable, privacy friendly, and practical
given our estimation that revocation is a rare event.

C. Related Work
The EPID scheme can be seen as a special group signature

scheme [1], [6], [21], [24] without the feature of opening
a group signature and identifying the signer of the signa-
ture. There have been several revocation methods proposed
for group signatures, such as [9], [36], [18], [2], [7]. The
unique property that EPID has that none of the above have,
is the capability to revoke a private key that generated a
signature, without being able to open the signature. The
EPID scheme in this paper also shares some properties with
identity escrow [30], anonymous credential systems [17], [22],
pseudonym system of Brands [8], and blacklistable anonymous
credentials scheme [39].
As mentioned earlier, EPID can be seen as a DAA scheme

with additional revocation capabilities. We remove some fea-
tures of DAA from the design of EPID, such as the name based
option and the outsourcing capability, since those features
are more TPM specific. We could easily add those features
back to EPID if needed. After DAA was first introduced by
Brickell, Camenisch, and Chen [10], it has drawn a lot of
attention from both industry and cryptographic community
(e.g., [16], [32], [3], to list a few). Brickell, Chen, and Li
recently constructed the first pairing based DAA scheme [11].
Later Chen, Morrissey, and Smart [26] showed that the DAA
scheme can be further optimized by transferring the underlying
pairing groups from the symmetric to the asymmetric settings.
Recently, Chen [25] and Brickell and Li [15] proposed DAA
schemes built on top of this paper. Both DAA schemes [25],
[15] focus on the TPM implementation and outsourcing capa-
bility, but they do not have the additional revocation capability
as in the EPID schemes.

D. Organization of This Paper
Rest of this paper is organized as follows. We give a formal

specification of EPID and present the corresponding security
model in Section II. We then define our notations and present
security assumptions in Section III. We present our EPID
scheme in Section IV. In Section V, we recommend two
choices of elliptic curves and security parameters, analyze the

769

efficiency of our scheme, and in the end compare our scheme
with the previous EPID scheme and the related schemes.
Finally, we conclude the paper in Section VI.

II. SPECIFICATION AND SECURITY MODEL OF EPID

In the rest of this paper, we use the following notations. Let
S be a finite set, x← S denotes that x is chosen uniformly at
random from S. Let b← A(a) denote an algorithm A that is
given input a and outputs b. Let 〈c, d〉 ← PA,B〈a, b〉 denote
an interactive protocol between A and B, where A inputs a
and B inputs b; in the end, A obtains c and B obtains d.

A. Specification of EPID
In an EPID scheme, there are four types of entities: an

issuer I, a revocation manager R, platforms P , and verifiers
V . There are two revocation lists managed by R: a private-
key based revocation list, denoted as pRL, and a signature
based revocation list, denoted as sRL. An EPID scheme has
the following four algorithms Setup, Sign, Verify, and Revoke,
and one interactive protocol Join.

Setup This setup algorithm for the issuer I takes a security
parameter 1k as input and outputs a group public key
gpk and an issuing private key isk.

(gpk,isk)← Setup(1k)

Join This join protocol is an interactive protocol between
the issuer I and a platform P . I is given the group
public key gpk and the issuing private key isk. P
is given gpk. In the end, P outputs a private key
sk, while I outputs nothing.

〈⊥,sk〉 ← JoinI,P〈(gpk,isk),gpk〉

Sign On input of the group public key gpk, a private key
sk, a message m, and a signature based revocation
list sRL, this sign algorithm outputs⊥ if sk has been
revoked in sRL, or outputs a signature σ otherwise.

⊥/σ ← Sign(gpk,sk, m,sRL)

The sRL is used by the platform to prove that it has
not been revoked in sRL, i.e., it has not created any
of the signatures in sRL.

Verify On input of the group public key gpk, a message m,
a private-key based revocation list pRL, a signature
based revocation list sRL, and a signature σ, this ver-
ify algorithm outputs valid, invalid, or revoked.

valid/invalid/revoked←

Verify(gpk, m,pRL,sRL, σ)

Note that the verifier needs to use the same sRL
that is used in the signature creation to verify the
signature, otherwise the verification would fail. It
is not an issue in practice as the verifier will send
the latest sRL to the platform as a challenge. Given
a signature already created, the verifier cannot later

verify it against a newer version of sRL, however,
he can verify it against any versions of pRL.

Revoke There are two types of revocations.
Private-key based revocation: Given the group public
key gpk and a private key sk, R updates pRL by
adding sk to pRL.

pRL← Revoke(gpk,pRL,sk)

Signature based revocation: Given the group public
key gpk, a message m, and a signature σ on m, R
updates sRL by placing σ to sRL after verifying σ.

sRL← Revoke(gpk,pRL,sRL, m, σ)

In the usage model, the private-key based revocation is used
when a platform has been corrupted by the adversary, i.e.,
a private key gets extracted from the secure storage of the
platform and published widely. The signature based revocation
is used whenR identifies that a platformP has been corrupted,
but has not obtained P’s private key.
For private-key based revocation, the revocation list is not

sent to the platform. This revocation method is known in the
literature as verifier-local revocation [7] and has also been
used in the DAA schemes [10], [11]. One implication of this
revocation method is that, given a signature σ on a message m
and a private key sk, a verifier can easily determine whether
σ was generated using sk by putting sk into pRL. Another
implication is that, once a platform has been revoked in pRL,
it loses its privacy and anonymity as all its previous signatures
can be traced. We intentionally design this feature to penalize
the revoked platform. Recall that, the issuer or the revocation
manager cannot revoke a platform in pRL unless the platform’s
private key has been extracted and revealed by the attacker. In
other words, the issuer cannot arbitrarily invade a platform’s
privacy by revoking the platform into pRL as he does not
know the platform’s private key.

B. Security Definition of EPID
An EPID scheme is secure if it satisfies the following three

requirements: correctness, anonymity for unrevoked platforms,
and unforgeability.
1) Correctness: Loosely speaking, the correctness require-

ment states that, every signature generated by a platform can
be verified as valid, except when the platform is revoked.
Formally speaking, let Σi be the set of all signatures generated
by the platform Pi, we have

σ ← Sign(gpk,ski, m,sRL),

Verify(gpk, m,pRL,sRL, σ) = valid

⇐⇒ (ski �∈ pRL) ∧ (Σi ∩ sRL = ∅)

2) Anonymity for Unrevoked Platforms: An EPID scheme
satisfies the anonymity property for unrevoked platforms if
no adversary can win the following anonymity game. In the
anonymity game, the goal of the adversary is to determine
which one of two private keys was used in generating a
signature. As mentioned earlier, given a signature and a private

770

key, the adversary could determine whether the signature was
generated using the private key, thus the adversary should not
be given access to either key. The anonymity game between a
challenger and an adversary A is defined as follows.
1) Setup. The adversary A runs (gpk,isk)← Setup(1k)
and sends gpk to the challenger.

2) Queries. The adversary A can make the following
queries to the challenger.
a) Join. A requests for creating a new platform Pi.
The challenger makes sure that i has not been
requested before and then runs the join protocol as
Pi with A as the issuer. In the end, the challenger
obtains ski.

b) Sign. A chooses a subset of the signatures obtained
from the challenger as sRL1. A may add signatures
that he computes to sRL. A requests a signature
on a message m with sRL for platform Pi. The
challenger makes sure Pi has been created, com-
putes σ ← Sign(gpk,ski, m, sRL), and returns σ
to A.

c) Corrupt. A requests the private key of Pi. The
challenger makes sure Pi has been created and then
responds with ski.

3) Challenge. A outputs a message m, a subset of the
signatures obtained from the challenger as sRL, and two
indices i0 and i1. A must have not made a corruption
query on either index and sRL cannot include signa-
tures from either Pi0 or Pi1 . The challenger chooses
a random bit b ← {0, 1}, computes a signature σ∗ ←
Sign(gpk,skib

, m,sRL), and sends σ∗ to A.
4) Restricted Queries. After the challenge phase, A can
make additional queries to the challenger, restricted as
follows.
a) Join. A can make join queries as before.
b) Sign. As before, except that A cannot include σ∗

in sRL.
c) Corrupt. As before, but A cannot make corrupt
queries at i0 and i1.

5) Output. Finally, A outputs a bit b′. The adversary wins
if b′ = b.

We define A’s advantage in winning the anonymity game as
|Pr [b = b′]−1/2|. The probability is taken over the coin tosses
of A, of the randomized setup, join, and sign algorithms, and
over the choice of b.
Definition 1: An EPID scheme is anonymous for unrevoked

platforms, if for every probabilistic polynomial-time adversary
A, the advantage in winning the anonymity game is negligible.
3) Unforgeability: We say that an EPID scheme is un-

forgeable if no adversary can win the following unforgeability
game. In the unforgeability game, the adversary’s goal is to
forge a valid signature, given that all private keys known to the
adversary have been revoked. The traceability game between
a challenger and an adversary A is defined as follows.

1A may choose a different sRL for each sign query.

1) Setup. The challenger runs (gpk,isk) ← Setup(1k)
and sends gpk to the adversary A. The challenger sets
U := ∅, the set of platforms controlled by the adversary.

2) Queries. The adversary A can make the following
queries to the challenger.
a) Join. A requests for creating a new platform Pi.
The challenger makes sure that i has not been
join requested before. There are two cases as
follows: (1) the challenger and A run 〈⊥,ski〉 ←
JoinI,A〈(gpk,isk),gpk〉, where A gets ski

from the join protocol. A sends ski to the chal-
lenger who appends i to U , or (2) the challenger
runs locally the join protocol and generates ski.
Note that A does not learn ski.

b) Sign. A chooses a subset of the signatures obtained
from the challenger as sRL. A requests a signature
on a message m with sRL for platform Pi. The
challenger makes sure Pi has been created, com-
putes σ ← Sign(gpk,ski, m,sRL), and returns σ
to A.

c) Corrupt. A requests the private key of Pi. The
challenger makes sure Pi has been created before,
responds with ski, and appends i to U .

3) Response. Finally, A outputs a message m∗, a private
key based revocation list pRL∗, a signature based revo-
cation list sRL∗, and a signature σ∗.

The adversary wins the game if: (1) Verify(gpk,pRL∗,
sRL∗, σ∗, m∗) = valid; (2) for every i ∈ U , either ski ∈
pRL∗ or one of the signatures created by Pi is placed in sRL∗;
and (3) A did not obtain σ∗ by making a sign query on m∗. In
other words, the adversary wins if he can forge a valid group
signature that he has not queried the signature before, and all
the private keys he knows have been revoked.
Definition 2: An EPID scheme is unforgeable, if for every

probabilistic polynomial-time adversary A, the probability in
winning the unforgeability game is negligible.
Note that a signature scheme that satisfies the EPID security

model above is unforgeable under chosen message attacks.
This follows immediately from the unforgeability game.

III. BACKGROUND AND BUILDING BLOCKS
A. Background on Bilinear Maps
We follow the notation of Boneh, Boyen, and Shacham [6]

to review some background on bilinear maps. Let G1 and G2

to two multiplicative cyclic groups of prime order p. Let g1

be a generator of G1 and g2 be a generator of G2. We say
e : G1×G2 → GT is an admissible bilinear map, if it satisfies
the following properties:
1) Bilinear. For all u ∈ G1, v ∈ G2, and for all a, b ∈ Z,

e(ua, vb) = e(u, v)ab.
2) Non-degenerate. e(g1, g2) �= 1 and is a generator of GT .
3) Computable. There exists an efficient algorithm for
computing e(u, v) for any u ∈ G1, v ∈ G2.

We sometimes call the two groups (G1, G2) in the above
a bilinear group pair. In the rest of this paper, we consider

771

bilinear maps e : G1 ×G2 → GT where G1, G2, and GT are
multiplicative groups of prime order p. We could set G1 = G2.
However, we allow for the more general case where G1 �=
G2 so that we are not limited to choose supersingular elliptic
curves, this allows us to take advantage of certain families of
elliptic curves in order to obtain the shortest possible private
keys and group signatures.

B. Cryptographic Assumptions

1) Strong Diffie-Hellman Assumption: Let G1 and G2 be
two cyclic groups of prime order p, respectively, generated
by g1 and g2. The q-Strong Diffie-Hellman (q-SDH) problem
in (G1, G2) is defined as follows: Given a (q + 3)-tuple
of elements (g1, g

γ
1 , . . . , g

(γq)
1 , g2, g

γ
2) as input, output a pair

(g
1/(γ+x)
1 , x) where x ∈ Z

∗
p. An algorithm A has advantage ε

in solving q-SDH problem in (G1, G2) if

Pr
[
A(g1, g

γ
1 , . . . , g

(γq)
1 , g2, g

γ
2) = (g

1/(γ+x)
1 , x)

]
≥ ε

where the probability is over the random choice of γ and the
random bits of A.
Definition 3: We say that the (q, t, ε)-SDH assumption

holds in (G1, G2) if no t-time algorithm has advantage at least
ε in solving the q-SDH problem.
The q-SDH assumption was used by Boneh and Boyen [5]

to construct a short signature scheme without random oracles
and was shown in the same paper that q-SDH assumption
holds in the generic group in the sense of Shoup [35]. The q-
SDH assumption was later used in [6] for constructing a short
group signature scheme. The security of the SDH problem was
studied by Cheon [27].
2) Decisional Diffie-Hellman Assumption: Let G, gener-

ated by g, be a cyclic group of prime order p. The Decisional
Diffie-Hellman (DDH) problem in G is defined as follows:
Given a tuple of elements (g, ga, gb, gc) as input, output 1 if
c = ab and 0 otherwise. An algorithm A has advantage ε in
solving DDH problem in G if

|Pr
[
g ← G, a, b← Zp : A(g, ga, gb, gab) = 1

]
−

Pr
[
g ← G, a, b, c← Zp : A(g, ga, gb, gc) = 1

]
| ≥ ε

where the probability is over the uniform random choice of
the parameters to A and over the random bits of A.
Definition 4: We say that the (t, ε)-DDH assumption holds

in G if no t-time algorithm has advantage at least ε in solving
the DDH problem in G.

IV. OUR EPID SCHEME

There are four types of entities in our construction of EPID:
an issuer I, a revocation managerR, platformsP , and verifiers
V . Our EPID scheme has the following algorithms Setup, Sign,
Verify, and Revoke and one interactive protocol Join which are
defined as follows.

Setup: Given 1k, this algorithm chooses a bilinear group
pair (G1, G2) of prime order p and a bilinear map function
e : G1 × G2 → GT . It also chooses a cyclic group G3 of
order p in which the DDH problem is hard. Let g1, g2, g3

be the generators of G1, G2, and G3 respectively. It chooses
h1, h2 ← G1, γ ← Z

∗
p, and computes w := gγ

2 . This algorithm
outputs

(gpk,isk) := ((e, p, G1, G2, G3, g1, g2, g3, h1, h2, w), γ)

Let H : {0, 1}∗ → Zp be a collision resistant hash function.
We treat H as a random oracle in the proof of security. In the
rest of this paper, we use T1, T2, T3, T4 to denote e(g1, g2),
e(h1, g2), e(h2, g2), and e(h2, w), respectively. T1, T2, T3, T4

can be pre-computed by the platforms and verifiers.
Join: The join protocol is performed by a platform P and

the issuer I. P takes gpk as input and I has gpk and isk.
The protocol has the following steps:
1) P chooses at random f, y′ ← Zp and computes C :=

hf
1 · h

y′

2 .
2) P sends C to I, and performs the following proof of
knowledge to I

PK {(f, y′) : hf
1 · h

y′

2 = C}

We can use the standard zero-knowledge proof protocols
such as [23], [34]. Because the security proof requires
rewinding to extract f from an adversarial platform, this
step can only be run sequentially. To support concurrent
join, we could use verifiable encryption [20] of the f
value or use the concurrent join technique described
in [29] with some loss of efficiency.

3) I chooses at random x ← Zp and y′′ ← Zp, and
computes

A := (g1 · C · h
y′′

2)1/(x+γ).

4) I sends (A, x, y′′) to the platform.
5) P computes y := y′ + y′′ (mod p) and verifies that

e(A, wgx
2) = e(g1h

f
1hy

2, g2).
6) P outputs sk := (A, x, y, f) where (A, x, y) is a
membership certificate on f .

Sign: On input of gpk, sk = (A, x, y, f), a message m ∈
{0, 1}∗, and a signature based revocation list sRL, this sign
algorithm has the following steps:
1) It chooses B ← G3 and computes K := Bf .
2) It chooses a ← Zp, computes that b := y + ax mod p
and T := A · ha

2 .
3) It runs the following signature of knowledge protocol

SPK{(x, f, a, b) : Bf = K ∧

e(T, g2)
−x · T f

2 · T
b
3 · T

a
4 = e(T, w)/T1}(m).

a) It randomly picks

rx ← Zp, rf ← Zp, ra ← Zp, rb ← Zp.

772

b) It computes

R1 := Brf ,

R2 := e(T, g2)
−rx · T

rf

2 · T
rb

3 · T
ra

4 ,

:= e(A, g2)
−rx · T

rf

2 · T
rb−arx

3 · T ra

4 .

c) It then computes

c := H(gpk, B, K, T, R1, R2, m).

d) It computes in Zp

sx := rx + cx, sf := rf + cf,

sa := ra + ca, sb := rb + cb.

4) It sets σ0 := (B, K, T, c, sx, sf , sa, sb).
5) Let sRL = {(B1, K1), . . . , (Bn2

, Kn2
)}. For i = 1, . . .,

n2, it proves in zero-knowledge that sk has not been
revoked in sRL, i.e., computes

σi := SPK{(f) : K = Bf ∧ Ki �= Bf
i }(m).

We can use the zero-knowledge proof protocol from
Camenisch and Shoup [20]. Note that we could batch
all the n2 zero-knowledge proofs together as follows
using the techniques in [12], [39] to achieve additional
efficiency, i.e., computes

SPK{(f) : K = Bf ∧

K1 �= Bf
1 ∧ . . . ∧ Kn2

�= Bf
n2
}(m).

For the simplicity, we assume the sign algorithm com-
putes n2 individual zero-knowledge proofs.

6) If any of the zero-knowledge proofs in the previous step
fails, it outputs σ := ⊥.

7) It outputs the signature σ := (σ0, σ1, . . . , σn2
).

Verify: On input of gpk, a message m, a private-key based
revocation list pRL, a signature based revocation list sRL, and
a signature σ, the verify algorithm has the following steps:
1) Let σ = (σ0, σ1, . . . , σn2

), where σ0 = (B, K, T, c, sx,
sf , sa, sb).

2) It first verifies that

B, K
?
∈ G3, T

?
∈ G1, sx, sf , sa, sb

?
∈ Zp.

3) It computes

R̂1 := Bsf ·K−c,

R̂2 := e(T, g2)
−sx · T

sf

2 · T
sb

3 · T
sa

4 · (T1/e(T, w))c,

:= e(T, g−sx

2 w−c) · T
sf

2 · T
sb

3 · T
sa

4 · T
c
1 .

4) It verifies that

c
?
= H(gpk, B, K, T, R̂1, R̂2, m).

5) If any of the above verification fails, it outputs invalid
and quits.

6) Let pRL = {f1, . . . , fn1
}. For i = 1, . . . , n1, it verifies

that K �= Bfi .

7) Let sRL = {(B1, K1), . . . , (Bn2
, Kn2

)}. For i = 1, . . .,
n2, it verifies that σi is indeed a valid zero-knowledge
proof

SPK{(f) : K = Bf ∧ Ki �= Bf
i }(m).

8) If any of the above two steps fails, it outputs revoked,
otherwise, outputs valid.

Revoke: Initially, both revocation lists are empty, i.e.,
pRL := ∅ and sRL := ∅.
1) Private-key based revocation: Given gpk, pRL, and
a private key sk = (A, x, y, f) to be revoked, R
updates pRL as follows: R verifies the correctness of
sk by checking whether the equation e(A, gx

2w) =
e(g1h

f
1hy

2 , g2) holds, then appends f to pRL.
2) Signature based revocation: Given gpk, pRL, sRL, a
message m, and corresponding signature σ, R updates
sRL as follows: Let σ = (σ0, σ1, . . . , σn2

). R first
verifies that σ is a valid signature on m, i.e., checks
Verify(gpk, m,pRL, ∅, σ0) = valid, then appends
(B, K) in σ0 to sRL.

Observe that steps 2-4 of the join algorithm and steps 2-4
of the verify algorithm indeed form a signature of knowledge

PK{(A, x, y, f) : e(A, gx
2w) = e(g1h

f
1hy

2 , g2) ∧ K = Bf}.

We first show the correctness of the signature of knowledge
protocol. Let (A, x, y, f) be a private key that satisfies the
equations e(A, gx

2w) = e(g1h
f
1hy

2 , g2) and Bf = K . Step 3 of
the sign algorithm is a standard way of proving the following
two equations hold:

Bf = K, e(T, g2)
−x · T f

2 · T
b
3 · T

a
4 = e(T, w)/T1.

The second equation holds because

e(T, w) · e(T, g2)
x

= e(T, gx
2w) = e(Aha

2 , g
x
2w) = e(A, gx

2w) · e(ha
2 , g

x
2w)

= e(g1h
f
1hy

2 , g2) · e(h
a
2 , w) · e(ha

2, g
x
2)

= e(g1, g2) · e(h1, g2)
f · e(h2, g2)

y · e(h2, w)a · e(h2, g2)
ax

= e(g1, g2) · e(h1, g2)
f · e(h2, g2)

y+ax · e(h2, w)a

= e(g1, g2) · e(h1, g2)
f · e(h2, g2)

b · e(h2, w)a

= T1 · T
f
2 · T

b
3 · T

a
4 .

Theorem 1: The EPID scheme is correct.
Theorem 2: The EPID scheme is anonymous in the random

oracle model under the DDH assumption in G3.
Theorem 3: The EPID scheme is unforgeable in the random

oracle model under the q-SDH assumption in (G1, G2).
Due to the space limit, the detailed proofs of the above

theorems are given in the technical report version of this
paper [14].

V. IMPLEMENTATION OF THE EPID SCHEME
In this section, we first suggest two choices of elliptic curves

and security parameters. We then analyze the efficiency of the
EPID scheme and compare our scheme with the original EPID
scheme in [12] and other related schemes.

773

A. Choices of Elliptic Curves and Security Parameters
We suggest the following two choices of security parameters.
1) To achieve 80-bit security level, we choose k = 6
and use a family of non-supersingular elliptic curves
defined by Miyaji et al. [33] for Tate pairing. As in [6],
we choose p and q to be 170-bit prime integers. Each
element in G1 can be represented by a 171-bit string. We
then choose a 170-bit prime q′ and construct G3 as an
order-p cyclic subgroup of group E(Fq′). The security
strength of this setting is approximately the same as a
standard 1024-bit RSA algorithm.

2) To achieve 128-bit security level, as suggested by
Koblitz and Menezes [31], the minimum size of G1

is 256-bit and the minimum size of F
∗

qk should be at
least 3072-bit. We choose embedding degree k = 12 for
Tate pairing and use a method developed by Barreto
and Naehrig [4]. We choose p and q to be 256-bit
prime integers and choose G3 to be an elliptic curve
group of order p. The security strength of this setting
is approximately the same as a standard 3072-bit RSA
algorithm.

B. Efficiency of the EPID Scheme
We now summarize the efficiency of the EPID scheme. In

what follows, we use EXP to denote an exponentiation or a
multi-exponentiation which has similar efficiency.
• For parameters with 80-bit security, p is a 170-bit prime,
each element in G1 or G3 is 171-bit in length. The size
of the private key is 681 bits or 86 bytes. The size of the
signature is 1363 bits or 171 bytes.

• For parameters with 128-bit security, p is a 256-bit prime,
each element in G1 or G3 is 257-bit in length. The size
of the private key is 1025 bits or 129 bytes. The size of
the signature is 2051 bits or 257 bytes.

• To sign a signature, the platform can pre-compute T2, T3,
T4, and e(A, g2). The sign algorithm only takes 1 EXP
in G1, 2 EXPs in G3, 1 EXP in GT .

• To verify a signature, the verifier can pre-compute T1,
T2, T3, and T4. The verify algorithm takes 1 EXP in G2,
1 EXP in G3, 1 EXP in GT , and 1 pairing operation.

• For each item in pRL, the platform needs to do nothing
while the verifier needs to perform 1 EXP in G3.

• For each item in sRL, the platform needs to compute 3
EXPs in G3 and the verifier needs to perform 2 EXPs
in G3 if we use the zero-knowledge proof in [20]. If
we apply the batched zero-knowledge proof in [39], the
platform needs to compute 2 EXPs and the verifier needs
to compute 1 EXP.

C. Comparison with EPID, DAA, and BLAC Schemes
Brickell and Li developed an EPID scheme from the strong

RSA assumption [12]. Their scheme is derived from the
original DAA scheme in [10]. Using 2048-bit RSA modulus
which has about 100-bit security, the length of private key is
670 bytes and the size of a signature is 2800 bytes in their
scheme. Our EPID scheme offers significant advantage over

the EPID scheme in [12] due to much smaller private key
size, as hardware devices typically have limited size of secure
storage to hide the private key.

private key size signature size
Our scheme 80-bit security 86 bytes 171 bytes
Our scheme 128-bit security 129 bytes 257 bytes
EPID scheme [12] 670 bytes 2800 bytes

TABLE I
A COMPARISON BETWEEN OUR PAIRING EPID SCHEME AND THE RSA

BASED EPID SCHEME

Brickell, Chen, and Li [11] developed the first pairing-
base DAA scheme. Their scheme is based on Camenisch and
Lysyanskaya’s pairing based group signature scheme [19].
Chen, Morrissey, and Smart further optimized the DAA
scheme [26] by transferring the underlying pairing groups
from the symmetric to the asymmetric settings. We now show
that our EPID scheme is more efficient than the pairing based
DAA schemes [11], [26]. See Table II for details.
Note that Chen [25] and Brickell and Li [15] recently

proposed DAA schemes built on top of this paper, respectively.
Both DAA schemes [25], [15] have similar complexity as our
EPID scheme. Again, both DAA schemes focus on the TPM
implementation and reduce the TPM workload by outsourcing
majority of the computation to the host.
Tsang et al. recently proposed a Blacklistable Anonymous

Credentials (BLAC) scheme in which a misbehaved user can
be revoked based on his previous signatures [39]. The BLAC
scheme [39] shares a similarity of construction as our EPID
scheme. However, our EPID scheme is about twice efficient
than [39] in both signature creation and verification and size
of the signatures. Regarding to revocation, the BLAC scheme
does not support private-key based revocation and has the same
efficiency for signature based revocation. If the size of sRL
is 10 (recall that hardware revocation is a rare event), our
EPID scheme is still around 25% more efficient than the BLAC
scheme in sign and verify algorithms.

VI. CONCLUSION
We have presented a new EPID scheme from bilinear

pairing. Our EPID scheme is efficient (if revocation list is
small) and provably secure in the random oracle model under
the q-SDH assumption and the DDH assumption. It is a good
candidate for hardware remote authentication and attestation.
We expect revocation to be a rare event due to the difficulty
of hardware attacks that are not scalable. The future work
includes developing new EPID schemes with more efficient
revocation while maintaining maximum user’s privacy such
that EPID scheme can be used beyond hardware authentication
and used as a generic anonymous authentication method.

REFERENCES
[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and

provably secure coalition-resistant group signature scheme. In Advances
in Cryptology — CRYPTO ’00, volume 1880 of LNCS, pages 255–270.
Springer, 2000.

774

private key size signature size sign verify
Our EPID scheme 86 bytes 171 bytes 4 EXP 3 EXP + 1 P

BCL DAA scheme [11] 213 bytes 512 bytes 10 EXP 2 EXP + 5 P

CMS DAA scheme [26] 86 bytes 148 bytes 8 EXP + 1 P 1 EXP + 5 P

DAA schemes based on this paper [25], [15] 64 bytes 171 bytes 5 EXP 3 EXP + 1 P

BLAC scheme [39] 86 bytes 320 bytes 10 EXP 7 EXP + 2 P

TABLE II
A COMPARISON BETWEEN OUR EPID SCHEME, THE PAIRING BASED DAA SCHEMES [11], [26], [25], [15], AND THE BLAC SCHEME [39] WITH 80-BIT

SECURITY LEVEL, WHERE EXP DENOTES MULTI-EXPONENTIATION AND P DENOTES A PAIRING OPERATION.

[2] G. Ateniese, D. X. Song, and G. Tsudik. Quasi-efficient revocation in
group signatures. In Proceedings of the 6th International Conference
on Financial Cryptography, volume 2357 of LNCS, pages 183–197.
Springer, 2002.

[3] M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-
calculus and automated verification of the direct anonymous attestation
protocol. In Proceedings of IEEE Symposium on Security and Privacy,
pages 202–215. IEEE Computer Society, 2008.

[4] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves
of prime order. In Proceedings of the 12th International Workshop on
Selected Areas in Cryptography, volume 3897 of LNCS, pages 319–331.
Springer, 2005.

[5] D. Boneh and X. Boyen. Short signatures without random oracles. In
Advances in Cryptology — EUROCRYPT ’04, volume 3027 of LNCS,
pages 56–73. Springer, 2004.

[6] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In
Advances in Cryptology — CRYPTO ’04, volume 3152 of LNCS, pages
41–55. Springer, 2004.

[7] D. Boneh and H. Shacham. Group signatures with verifier-local
revocation. In Proceedings of 11th ACM Conference on Computer and
Communications Security, pages 168–177, Oct. 2004.

[8] S. A. Brands. Rethinking Public Key Infrastructures and Digital
Certificates: Building in Privacy. MIT Press, Aug. 2000.

[9] E. Bresson and J. Stern. Efficient revocation in group signatures. In
Proceedings of the 4th International Workshop on Practice and Theory
in Public Key Cryptography, pages 190–206. Springer, 2001.

[10] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation.
In Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security, pages 132–145. ACM Press, 2004.

[11] E. Brickell, L. Chen, and J. Li. A new direct anonymous attestation
scheme from bilinear maps. In Proceedings of 1st International
Conference on Trusted Computing, volume 4968 of LNCS, pages 166–
178. Springer, 2008.

[12] E. Brickell and J. Li. Enhanced Privacy ID: A direct anonymous
attestation scheme with enhanced revocation capabilities. In Proceedings
of the 6th ACM Workshop on Privacy in the Electronic Society, pages
21–30. ACM Press, Oct. 2007.

[13] E. Brickell and J. Li. Enhanced Privacy ID: A remote anonymous
attestation scheme for hardware devices. Intel Technology Journal:
Advances in Internet Security, 13(2), 2009.

[14] E. Brickell and J. Li. Enhanced Privacy ID from bilinear pairing. Cryp-
tology ePrint Archive, Report 2009/095, 2009. http://eprint.iacr.org/.

[15] E. Brickell and J. Li. A pairing-based DAA scheme further reducing
TPM resources. In Proceedings of 3rd International Conference on Trust
and Trustworthy Computing, pages 181–195. Springer, 2010.

[16] J. Camenisch and J. Groth. Group signatures: Better efficiency and
new theoretical aspects. In Proceedings of 4th International Conference
on Security in Communication Networks, volume 3352 of LNCS, pages
122–135. Springer, 2005.

[17] J. Camenisch and A. Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Advances in Cryptology — EUROCRYPT ’01, volume 2045 of LNCS,
pages 93–118. Springer, 2001.

[18] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and appli-
cation to efficient revocation of anonymous credentials. In Advances
in Cryptology — CRYPTO ’02, volume 2442 of LNCS, pages 61–76.
Springer, 2002.

[19] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In Advances in Cryptology — CRYPTO
’04, volume 3152 of LNCS, pages 56–72. Springer, 2004.

[20] J. Camenisch and V. Shoup. Practical verifiable encryption and decryp-

tion of discrete logarithms. In Advances in Cryptology — CRYPTO ’03,
volume 2729 of LNCS, pages 126–144. Springer, 2003.

[21] J. Camenisch and M. Stadler. Efficient group signature schemes for
large groups. In Advances in Cryptology — CRYPTO ’97, volume 1296
of LNCS, pages 410–424. Springer, 1997.

[22] D. Chaum. Security without identification: Transaction systems to make
big brother obsolete. Communications of the ACM, 28(10):1030–1044,
1985.

[23] D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved protocol
for demonstrating possession of discrete logarithms and some general-
izations. In Advances in Cryptology — EUROCRYPT ’87, volume 304
of LNCS, pages 127–141. Springer, 1987.

[24] D. Chaum and E. van Heyst. Group signatures. In Advances in
Cryptology — EUROCRYPT ’91, volume 547 of LNCS, pages 257–265.
Springer, 1991.

[25] L. Chen. A DAA scheme requiring less TPM resources. In Proceedings
of the 5th China International Conference on Information Security and
Cryptology, LNCS. Springer, 2009.

[26] L. Chen, P. Morrissey, and N. P. Smart. Pairings in trusted computing.
In Proceedings of the 2nd Internation Conference on Pairing-Based
Cryptography, volume 5209 of LNCS, pages 1–17. Springer, 2008.

[27] J. H. Cheon. Security analysis of the strong diffie-hellman problem. In
Advances in Cryptology — EUROCRYPT ’06, volume 4004 of LNCS,
pages 1–11. Springer, 2006.

[28] J. Furukawa and H. Imai. An efficient group signature scheme from
bilinear maps. IEICE Transactions, 89-A(5):1328–1338, 2006.

[29] A. Kiayias and M. Yung. Group signatures with efficient concurrent
join. In Advances in Cryptology — EUROCRYPT ’05, volume 3494 of
LNCS, pages 198–214. Springer, 2005.

[30] J. Kilian and E. Petrank. Identity escrow. In Advances in Cryptology —
CRYPTO ’98, volume 1642 of LNCS, pages 169–185. Springer, 1998.

[31] N. Koblitz and A. Menezes. Pairing-based cryptography at high security
levels. In Proceedings of the 10th IMA International Conference
on Cryptography and Coding, volume 3796 of LNCS, pages 13–36.
Springer, 2005.

[32] A. Leung and C. J. Mitchell. Ninja: Non identity based, privacy
preserving authentication for ubiquitous environments. In Proceedings
of 9th International Conference on Ubiquitous Computing, volume 4717
of LNCS, pages 73–90. Springer, 2007.

[33] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions
of elliptic curve traces for FR-reduction. IEICE Transactions on
Fundamentals, E84-A(5):1234–1243, 2001.

[34] T. P. Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Advances in Cryptology — CRYPTO ’91, volume
576 of LNCS, pages 129–140. Springer, 1991.

[35] V. Shoup. Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology — EUROCRYPT ’97, volume 1233 of LNCS,
pages 256–266. Springer, 1997.

[36] D. X. Song. Practical forward secure group signature schemes. In Pro-
ceedings of the 8th ACM Conference on Computer and Communications
Security, pages 225–234. ACM Press, 2001.

[37] Trusted Computing Group. TCG TPM specification 1.2, 2003. Available
at http://www.trustedcomputinggroup.org.

[38] Trusted Computing Group website. http://www.trustedcomputinggroup.
org.

[39] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith. Blacklistable
anonymous credentials: Blocking misbehaving users without TTPs. In
ACM Conference on Computer and Communications Security, pages
72–81. ACM Press, 2007.

775

